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1. Introduction

The model of layered random medium with rough interfaces is often encountered

in many applications in various disciplines. A simple approach is to incoherently

add the contributions of volumetric and surface fluctuations[36, 16]. However, this

is valid only when we are in the single scattering regime[7, 20]. There are some

other hybrid approaches [23, 6] which take into consideration some multiple scat-

tering effects. Brown [3] outlines an iterative procedure which properly includes all

multiple scattering interactions. However, it does not appear feasible to carry out

the calculation beyond one or two iterations. Among the other methods currently

used, perhaps the most widely used approach is the radiative transfer (RT) approach

[31, 14, 13, 27, 4, 32, 17, 10]. Here one formulates the scattering and propagation in

each layer by using the radiative transfer equation which involves only the parameters

of the medium of that layer. The boundary conditions are derived separately and in-

dependently using some asymptotic procedure developed in rough surface scattering

theory [2, 1, 33]. The RT equations, along with the boundary conditions, comprise

the system that describes the problem.

Although this procedure appears to be reasonable and sound it is apparent that

certain approximations are involved and we would like to know the conditions under

which this kind of approach is appropriate. One way to better understand the RT

approach is to compare it with the more rigorous wave approach. For the case of

unbounded random media it was found [35] that the RT approach is applicable when

(a) one uses the quasi-uniform field approximation, (b) one uses the ladder approxi-

mation to the intensity operator of the Bethe-Salpeter equation, and (c) the medium

is statistically quasi-homogeneous.

However, our problem has bounded structures which are randomly rough. There-

fore it remains to be seen whether the conditions arrived at in the case of unbounded

random media will be sufficient for our problem.

1
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In our project we employed a statistical wave approach using surface scattering

operators [33, 21] to derive the transport equations for our multilayer problem. In

this process we found that there are more conditions implied when we choose to apply

the RT approach to our problem than it is widely believed to be necessary. One such

condition is the weak surface correlation approximation. This means that the RT

approach places certain restrictions on the type of rough interfaces that it can model

accurately.

This report is organized as follows. In Section II we describe the geometry of the

problem. In the next section we describe the RT approach to the problem. In Section

IV we describe the wave approach to this problem. In Section V we transition to the

transport equation system. The report concludes with a discussion of our findings.

2. Description of the Problem

The geometry of the problem is shown in Figure 1. We have an N -layer random

medium stack with rough interfaces. The permittivity of the j-th layer is εj + ε̃j(r)

where εj is the deterministic part and ε̃j is the randomly fluctuating part. The

permeability of all the layers is that of free space. The randomly rough interfaces

are given as z = zj + ζj(r⊥). It is assumed that ε̃j and ζj are zero-mean isotropic

stationary random processes independent of each other. Thus, on the average the

interfaces are parallel planes. Let z0 = 0, and let dj be the thickness of the j-th layer.

The media above and below the stack are homogeneous with parameters ε0, k0, and

εN+1, kN+1, respectively. This system is excited by a monochromatic electromagnetic

plane wave and we are interested in formulating the resulting multiple scattering

process.

3. Radiative Transfer Approach

Multiple scattering in a complex environment is well described by the radiative

transfer theory. This theory is not only conceptually simple but also very efficient.

2
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Figure 1: Geometry of the problem.

The fundamental quantity here is the specific intensity I which is governed by the

following equation [5, 28, 12]

ŝ · ∇I(r, ŝ)+
=
γ I(r, ŝ) =

∫
dΩ′P̄(ŝ, ŝ′)I(r, ŝ′). (1)

One may regard this equation as a statement of conservation of energy density I

which is a phase-space quantity at position r and direction ŝ.
=
γ is the extinction

matrix which is a measure of loss of energy in direction ŝ due to scattering in other

directions. P̄ is the phase matrix representing increase in energy density in direction

ŝ due to scattering from neighbouring elements. Ω is the solid angle subtended by ŝ.

Given the statistical characteristics of the medium one can readily calculate the phase

matrix. The extinction matrix is hence calculated using the relation
=
γ=

∫
P̄(ŝ′, ŝ)dΩ′.

The specific intensity in each layer is governed by an equation similar to (1). Since

our layer problem has translational invariance in azimuth the RT equation for the

m-th layer takes the following form,

cos θ
d

dz
Im(z, ŝ)+

=
γm Im(z, ŝ) =

∫
Ωm

dΩ′P̄m(ŝ, ŝ′)Im(z, ŝ′) (2)

3
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where the subscript m denotes that the quantity corresponds to those of the m-th layer

and θ is the elevation angle of ŝ. This set of RT equations is complemented by a set of

boundary conditions which are in turn based on energy conservation considerations.

To be more precise, we impose the condition that the energy flux density at each

interface is conserved. This leads to the following boundary conditions on the m-th

interface

Iu
m(zm, ŝ) =

∫
dΩ′ 〈Rm+1,m(ŝ, ŝ′)〉 Id

m(zm, ŝ′) +

∫
dΩ′ 〈Tm,m+1(ŝ, ŝ

′)〉 Iu
m+1(zm, ŝ′). (3)

The boundary conditions on the (m − 1)-th interface are given as

Id
m(zm−1, ŝ) =

∫
dΩ′ 〈Rm−1,m(ŝ, ŝ′)〉 Iu

m(zm−1, ŝ
′)+

∫
dΩ′ 〈Tm,m−1(ŝ, ŝ

′)〉 Id
m−1(zm−1, ŝ

′),

(4)

where Rmn and Tmn are the local reflection and transmission Müller matrices. To

be more specific, Rmn represents the reflection Müller matrix of waves incident from

medium n on the interface that separates medium m and medium n. The superscripts

u and d indicate whether the intensity corresponds to a wave travelling upwards or

downwards. The integrations in these expressions are over a solid angle (hemisphere)

corresponding to ŝ′. Suppose we have a plane wave incident on this stack from above.

Then the downward travelling intensity in Region 0 is

Id
0(z, ŝ) = B0δ (cos θ0 − cos θi) δ(φ0 − φi), (5)

where B0 is the intensity of the incident plane wave and {θi, φi} describes its direction.

Since there is no source or scatterer in Region N + 1,

Iu
N+1(z, ŝ) = 0.

Notice again that these boundary conditions represent conservation of intensity at

the interfaces.

We should point out that the radiative transfer approach as applied to a particular

problem is only a model based on certain assumptions. Since the RT theory is used in

4
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a variety of applications, the particular assumptions involved are described in terms

of different terminologies, specific to the discipline where it is used. One good way to

understand in more general terms the RT approach and the underlying assumptions

is to compare it with the more rigorous statistical wave approach. For the case of an

unbounded random medium this kind of study was carried out in the seventies [35].

From that study we learn that the radiative transfer theory can be applied under the

following conditions:

1. Quasi-stationary field approximation.

2. Weak fluctuations:

(a) Ladder approximation to the intensity operator.

(b) Kraichnan approximation to the mass operator.

3. Statistical homogeneity of the medium fluctuations.

These are the well-known conditions that we associate with the RT approach.

However, our problem has bounded structures and, further, they are randomly rough.

The question is this: are the above conditions sufficient to apply the RT approach for

our problem? This is the motivation for our investigation. We follow the statistical

wave approach to this problem, derive the equations for the coherence functions, and

hence make the transition to the RT equations. This procedure enables us to better

understand the necessary conditions for using the RT approach for our problem.

4. Wave Approach

The following are the equations that govern the waves in the layer structure:

∇×∇× Ej − k2
jEj = vjEj j = 1, · · · , N, (6)

where vj ≡ ω2με̃j(r) represents the volumetric fluctuation in Region j. For the

homogeneous regions above and below we have

∇×∇× E0 − k2
0E0 = 0, (7a)

5
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∇×∇× EN+1 − k2
N+1EN+1 = 0. (7b)

The boundary conditions at the j-th interface are

n̂ × Ej(r⊥, ζj) = n̂ × Ej+1(r⊥, ζj), (8a)

n̂ ×∇× Ej(r⊥, ζj) = n̂ ×∇× Ej+1(r⊥, ζj). (8b)

where n̂ is the unit vector normal to the j-th interface with normal pointing into the

medium j. This system is complemented by the radiation conditions well away from

the stack. We assume that we know the solution to the problem without volumetric

fluctuations, and denote it as Ě. The corresponding Green’s functions denoted as ˇ̄Gij

are governed by the following set of equations:

∇×∇× ˇ̄Gjk(r, r
′) − k2

j
ˇ̄Gjk(r, r

′) =
=

Īδjkδ(r − r′), (9a)

n̂ × ˇ̄Gjk(r⊥, ζj; r
′) = n̂ × ˇ̄G(j+1)k(r⊥, ζj; r

′), (9b)

n̂ ×∇× ˇ̄Gjk(r⊥, ζj; r
′) = n̂ ×∇× ˇ̄G(j+1)k(r⊥, ζj; r

′). (9c)

Another pair of equations similar to (9b) and (9c) corresponding to (j−1)-th interface

need to be added to this list.
=

Ī here is unit dyad. Using these Green’s functions and

the radiation conditions the wave functions can be represented as

Ej(r) = Ěj(r) +
N∑

k=1

∫
Ωk

dr′ ˇ̄Gjk(r, r
′)vk(r

′)Ek(r
′) j = 0, 1, · · · , N + 1 (10)

where Ωk = {r′⊥; ζk < z′ < ζk−1}. Note that v0 = vN+1 = 0. We first average (10)

w.r.t. volumetric fluctuations to get

〈Ej(r)〉v = Ěj(r)+

+
N∑

k=1

N∑
l=1

∫
Ωk

dr′
∫

Ωl

dr′′ ˇ̄Gjk(r, r
′)〈Ḡkl(r

′, r′′)〉v〈vk(r
′)vl(r

′′)〉〈El(r
′′)〉v .

(11)

where Ḡkl is governed by the following system of equations

∇×∇× Ḡkl(r, r
′) − k2

kḠkl(r, r
′) =

=

Īδklδ(r − r′) + vkḠkl(r, r
′)

6
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n̂ × Ḡkl(r⊥, ζk; r
′) = n̂ × Ḡ(k+1)l(r⊥, ζk; r

′),

n̂ ×∇× Ḡkl(r⊥, ζk; r
′) = n̂ ×∇× Ḡ(k+1)l(r⊥, ζk; r

′).

Here n̂ being the unit vector normal to the k-th interface. We also have a similar set

of boundary conditions on the k − 1-th interface. The subscript v is used to denote

averaging with respect to volumetric fluctuations. Here we have used a first order

approximation to the mass operator based on weak fluctuations. The volumetric

fluctuations in different regions are assumed to be uncorrelated, which means that

〈vk(r
′)vl(r

′′)〉 = δklCk(r
′ − r′′), (12)

where Ck is the correlation function of the volumetric fluctuations in Region k. We

have assumed that the fluctuations of the parameters of our problem are Gaussian

and statistically homogeneous. Inserting (12) in (11) and employing ∇×∇×
=

Ī − k2
j

on (11) we get

∇×∇× 〈Ej(r)〉v − k2
j 〈Ej(r)〉v =

∫
Ωj

dr′〈Ḡjj(r, r
′)〉vCj(r − r′)〈Ej(r

′)〉v . (13)

Next we average (13) over the surface fluctuations,

∇×∇× 〈Ej(r)〉vs − k2
j 〈Ej(r)〉vs =

∫
Ω̄j

dr′
〈
〈Ḡjj(r, r

′)〉vCj(r − r′)〈Ej(r
′)〉v

〉
s

where the subscript s denotes averaging over surface fluctuations and Ω̄j = {r′⊥; ẑj <

z′ < ẑj−1}. We approximate
〈
〈Ḡjj(r, r

′)〉vCj(r − r′)〈Ej(r
′)〉v

〉
s

as〈
Ḡjj(r, r

′)〉vsCj(r − r′)〈Ej(r
′)
〉

vs
and obtain

∇×∇× 〈Ej(r)〉vs − k2
j 〈Ej(r)〉vs =

∫
Ω̄j

dr′〈Ḡjj(r, r
′)〉vsCj(r − r′)〈Ej(r

′)〉vs. (14)

We call this the weak surface correlation approximation. We will later find that this

is one additional approximation necessary to arrive at the RT system. First note from

(14) that (∇×∇×
=

Ī −k2
j )〈Ej(r)〉vs = 0 for j = 0, N+1. This means that the coherent

propagation constants in regions above and below the layer stack are unaffected by

the fluctuations of the problem. However, they indeed get modified within the stack

7
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region. On writing (14) as (∇×∇×
=

Ī −k2
j −L)〈ψj〉 = 0, where L denotes the integral

operator
∫

Ω̄j
dr′

〈
Ḡjj(r, r

′)
〉

vs
Cj(r− r′), we infer that χj ≡

√
(k2

j +L) represents the

mean propagation constant in Ω̄j. Observe that χj depends explicitly on the volu-

metric fluctuations in Region j and implicitly on the fluctuations of the stack, both

volumetric and surface. This is in contrast to the RT approach where
=
γj depends

exclusively on the volumetric fluctuations in Region j. Moreover, χj depends on the

polarization if the fluctuations of the problem are anisotropic. Further, even if the vol-

umetric fluctuations are isotropic χj will be polarization-dependent because of surface

reflections. This is in contrast to the RT approach where
=
γj is polarization-dependent

only when the volumetric fluctuations are anisotropic. Therefore the question is this:

when do the effects of boundaries on the mean propagation constants become negli-

gible? A first order solution to the above dispersion relation shows that in situations

where the thickness of the layer is larger than the corresponding mean free path the

influence of the boundaries on the mean propagation constants become negligible, as

in the case of the RT system.

Since the problem is invariant under translations in azimuth the mean wave func-

tions for our problem have the following form:

〈Ep
j(r)〉vs = exp(ik⊥i · r)

{
Ap

j(k⊥i)p
+
j exp[iqp

j z] + Bp
j (k⊥i)p

−
j exp[−iqp

j z]
}

j = 1, 2, · · · , N, (15)

〈Ep
0(r)〉vs = exp(ik⊥i · r)

{
p−

0 exp[−ik0ziz] + Rp(k⊥i)p
+
0 exp[ik0ziz]

}
, (16)

and

〈Ep
N+1(r)〉vs = exp(ik⊥i · r)T p(k⊥i)p

−
N+1 exp[−ik(N+1)ziz], (17)

where the superscript p stands for the polarization, either horizontal or vertical. p is

the unit vector representing polarization. qj is the z-component of χj. The subscript

i is used to indicate that the wave vector is in the incident direction. R and T denote,

respectively, the mean reflection and transmission coefficient of the stack. Aj and Bj

8
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denote, respectively, the mean coefficients of up-going and down-going waves in the

j-th layer. Based on this we can formulate the waves averaged w.r.t. volumetric

fluctuations as

〈Ej(r)〉pv =
1

4π2

∫
dk⊥ exp(ik⊥·r)

{
Apq

j (k⊥,k⊥i)q
+
j exp[iqjz]+Bpq

j (k⊥,k⊥i)q
−
j exp[−iqjz]

}
j = 1, 2, · · · , N, (18)

〈E0(r)〉pv = exp(ik⊥i · r) exp[−ik0ziz]p−
0 +

+
1

4π2

∫
dk⊥ exp(ik⊥ · r)Rpq(k⊥,k⊥i)q

+
0 exp[ik0zz], (19)

and

〈EN+1(r)〉pv =
1

4π2

∫
dk⊥ exp(ik⊥ · r)T pq(k⊥,k⊥i)q

−
N+1 exp[−ik(N+1)zz]. (20)

where Aj, Bj, R and T are now integral operators representing scattering from rough

interfaces. The boundary conditions associated with the above equations at the j-th

interface are

n̂ × 〈Ej(r⊥, ζj)〉v = n̂ × 〈Ej+1(r⊥, ζj)〉v j = 1, 2, · · · , N (21a)

and

n̂ ×∇× 〈Ej(r⊥, ζj)〉v = n̂ ×∇× 〈Ej+1(r⊥, ζj)〉v j = 1, 2, · · · , N. (21b)

The above system may be solved either numerically or by anyone of the asymptotic

methods∗ available in rough surface scattering theory [2, 1, 33] to evaluate the mean

coefficients that appear in (15)-(17).

We proceed now to the analysis of the second moments, by starting with (10). For

convenience we write it in symbolic form as

Ej = Ěj +
N∑

k=1

ˇ̄GjkvkEk. (22)

We take the tensor product of this equation with its complex conjugate and average

w.r.t. volumetric fluctuations and obtain

〈
Ej ⊗ E∗

j

〉
v

= 〈Ej〉v⊗〈E∗
j〉v+

N∑
k=1

N∑
k′=1

N∑
l=1

N∑
l′=1

〈Ḡjk〉v⊗〈Ḡ∗
jk′〉vK̂kk′ll′ 〈El ⊗ E∗

l′〉v , (23)

∗It is necessary, however, to meet the weak surface correlation approximation employed earlier
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where K is the intensity operator of the volumetric fluctuations. Employing the weak

fluctuation approximation we approximate K by its leading term

K̂kk′ll′ � 〈vk ⊗ v∗
k〉δkk′ll′

=

I . (24)

Next we average (23) w.r.t. the surface fluctuations and employ the weak surface

correlation approximation, as before, to get

〈
Ej ⊗ E∗

j

〉
vs

=
〈
〈Ej〉v ⊗ 〈E∗

j〉v
〉

s
+

N∑
k=1

〈 〈
Ḡjk

〉
v
⊗

〈
Ḡ∗

jk

〉
v

〉
s
〈vk ⊗ v∗

k〉 〈Ek ⊗ E∗
k〉vs .

(25)

The above is an equation for the second moment of the wave function E, which can

be decomposed into a coherent part Ē and a diffuse part Ẽ. Therefore,

〈E ⊗ E∗〉 = 〈E〉 ⊗ 〈E∗〉 + 〈Ẽ ⊗ Ẽ∗〉. (26)

The coherent part is not of much interest; we know that it is specular for our problem.

The diffuse or the incoherent part is of more interest. Therefore we write (25) in terms

of diffuse fields:

〈
Ẽj⊗Ẽ∗

j

〉
=

〈
〈̃Ej〉v⊗〈̃E∗

j〉v
〉

s
+

N∑
k=1

〈 〈
Ḡjk

〉
v
⊗

〈
Ḡ∗

jk

〉
v

〉
s
〈vk⊗v∗

k〉 〈Ek ⊗ E∗
k〉vs , (27)

where 〈̃Ej〉v is the fluctuating part of 〈Ej〉v. Let us now write (27) in more detail as:

〈
Ẽj(r) ⊗ Ẽ∗

j(r
′)
〉

=
〈

˜〈Ej(r)〉v ⊗ ˜〈E∗
j(r

′)〉
v

〉
s
+

N∑
k=1

∫
Ω̄k

dr1

∫
Ω̄k

dr′1

〈 〈
Ḡjk(r, r1)

〉
v
⊗

〈
Ḡ∗

jk(r
′, r′1)

〉
v

〉
s
|kk|4Ck(r1 − r′1)〉 〈Ek(r1) ⊗ E∗

k(r
′
1)〉vs . (28)

As it stands this equation is not convenient for seeking solution either analytically or

numerically. Besides, one important goal for us is to investigate the conditions needed

for employing the radiative transfer approach. With this in mind we introduce Wigner

transforms. Note that (28) is an equation for the coherence function. On the other

hand the RT equation, as we saw earlier, is an equation for the specific intensity

which is a ‘phase-space’ quantity. Wigner transforms serve as a bridge to link these

two quantities [34, 9, 18, 24].
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We introduce Wigner transforms of waves and Green’s functions as

Em

(
r + r′

2
,k

)
=

∫
d(r − r′) 〈Em(r) ⊗ E∗

m(r′)〉 e−ik·(r−r′), (29)

Gmn

(
r + r′

2
,k

∣∣∣∣r1 + r′1
2

, l

)
=

∫
d(r − r′)

∫
d(r1 − r′1)

e−ik·(r−r′)eil·(r1−r′1)
〈 〈

Ḡmn(r, r1)
〉

v
⊗

〈
Ḡ∗

mn(r′, r′1)
〉

v

〉
s
. (30)

In terms of these transforms (28) becomes

Ẽm(r,k) = Ẽs
m(r,k)+

1

(2π)6

N∑
n=1

|kn|4
∫

Ω̄n

dr′
∫

dα

∫
dβ Gmn(r,k|r′, α)Φn(α−β)En(r′,β),

(31)

where Φn is the spectral density of the volumetric fluctuations in the n-th layer. We

have used the superscript s in the first term to indicate that this is due to surface

scattering as defined by the first term in (28).

The fact that our problem has translational invariance in azimuth implies the

following:

Em(r,k) = Em(z,k), (32a)

Gmn(r,k|r′, l) = Gmn(z,k|z′, l; r⊥ − r′⊥). (32b)

Using these relations in (31) we have

Ẽm(z,k) = Ẽs
m(z,k) +

1

(2π)6

N∑
n=1

|kn|4
∫ zn−1

zn

dz′
∫

dα

∫
dβ

Gmn(z,k|z′,α; 0)Φn(α − β)En(z′,β), (33)

where Gmn(z,k|z′,α; 0) is the Fourier transform of Gmn(z,k|z′,α; r⊥−r′⊥) w.r.t. r⊥−

r′⊥ evaluated at the origin of the spectral space. To proceed further we need to

evaluate Gmn. Furthermore, we need to relate this system with that of RT, which

involves the boundary conditions at the interfaces. In view of this we need to identify

the coherence functions corresponding to up- and down-going wave functions. To

facilitate this we decompose 〈Gmn〉v into its components,

〈Ḡmn〉v = δmnḠ
o
m + Ḡuu

mn + Ḡud
mn + Ḡdu

mn + Ḡdd
mn, (34)
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where the first term is the singular part of the Green’s function. The superscripts u

and d indicate up- and down-going elements of the waves. The other components are

due to reflections from boundaries. These are formally constructed using the concept

of surface scattering operators as follows [33],〈
Gab

mn(r, r′)
〉μν

v
=

=
1

(2π)4

∫
dk⊥

∫
dk′

⊥{Sab
mn(k⊥,k′

⊥)}μνeik⊥·r+iaqμ
m(k⊥)ze−ik′

⊥·r′−ibqν
n(k′

⊥)z′ , (35)

where S̄ab
mn is the surface scattering operator. The superscripts a and b on S are

used to indicate whether the waves are up-going or down-going. In the exponents,

a, b = 1 if the waves are up-going. We let a, b = −1 if the waves are down-going. The

z-component of the mean propagation constants in the n-th layer is denoted as qn.

We recall that Gmn is the Wigner transform of
〈 〈

Ḡmn

〉
v
⊗

〈
Ḡ∗

mn

〉
v

〉
s
. The super-

scripts μ, ν stand for polarization, either h or v. It is important to note that only the

in the quasi-uniform limit does the Wigner transform of the coherence function lead

to the specific intensity of the RT equation. For our layer geometry the Green’s func-

tion is nonuniform. However, each of its components given in (34) is quasi-uniform.

When we use (34) to perform the Wigner transform we ignore all cross terms. In

other words, we make the following approximation,

Gmn � δmnGo
m + Guu

mn + Gud
mn + Gdu

mn + Gdd
mn,

where Gab
mn is the Wigner transform of

〈 〈
Ḡab

mn

〉
v
⊗

〈
Ḡab∗

mn

〉
v

〉
s
. Most of the cross terms

are nonuniform and may be neglected under the quasi-uniform field assumption. A

couple of cross terms are quasi-uniform and their inclusion lead to phase matrices

that are different from those of the RT system. It turns out that such additional

coherence terms become negligible when the layer thickness is of the same order

or greater than the mean free path of the corresponding layer. It is under these

conditions the approximate expression for Gmn given above is good.

With the introduction of this representation for Gmn in (31) we can trace up- and
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down-going waves to obtain the following equations for the coherence function:

Ẽu
m(z,k) = Ẽsu

m (z,k)+

+
1

(2π)6
|km|4

∫ z

zm

dz′
∫

dα

∫
dβ G>

m(z,k|z′, α; 0)Φm(α − β)Em(z′,β)

+
1

(2π)6

N∑
n=1

|kn|4
∫ zn−1

zn

dz′
∫

dα

∫
dβ Gua

mn(z,k|z′, α; 0)Φn(α − β)Ea
n(z′,β)

(36a)

Ẽd
m(z,k) = Ẽsd

m (z,k)+

+
1

(2π)6
|km|4

∫ zm−1

z

dz′
∫

dα

∫
dβ G<

m(z,k|z′,α; 0)Φm(α − β)Em(z′,β)

+
1

(2π)6

N∑
n=1

|kn|4
∫ zn−1

zn

dz′
∫

dα

∫
dβ Gda

mn(z,k|z′,α; 0)Φn(α − β)Ea
n(z′,β)

(36b)

Note that summation over a = {u, d} is implied in the above equations. The first

term in these equations, Ẽsa, represents the contribution due exclusively to surface

scattering, and has the following form:

{
Ẽsa

m (z,k)
}μν

= 2πδ

{
kz −

1

2
a [qμ

m(k⊥) + qν∗
m (k⊥)]

}

eia[qμ
m−qν∗

m ]z
〈{

Σ̃a
m

}μμ′ {
Σ̃a∗

m

}νν′

(k⊥,k⊥i)

〉
s

Eμ′iE
∗
ν′i, (37)

where Σa
m is the amplitude of the up-going wave in the m-th layer after volumetric av-

eraging is performed. This means that it is a random function of surface fluctuations.

When we substitute (37) and the expressions for Gmn in (36) we find that

{
Ẽa

m(z,k)
}

μν
= 2πδ

{
kz −

1

2
a[qμ

m(k⊥) + qν∗
m (k⊥)]

}
eia[qμ

m−qν∗
m ]z

{
Ẽa

m(z,k⊥)
}

μν
. (38)

On substituting this in (36) and differentiating w.r.t. z we obtain the following

transport equations:{
d

dz
− i [qμ(k⊥) − q∗ν(k⊥)]

}
Ẽu

μν(z,k⊥) = ˜̄E
u

μν(z,k⊥) +
|km|4
(2π)2

∫
dα⊥S>

μ S>∗
ν

Φm

{
k⊥ − α⊥;

1

2
[qμ(k⊥) + q∗ν(k⊥)] − 1

2
a [qμ′(α⊥) + q∗ν′(α⊥)]

}
(μ·μ′)(ν·ν ′)Ẽa

μ′ν′(z, α⊥),

(39a)
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{
− d

dz
− i [qμ(k⊥) − q∗ν(k⊥)]

}
Ẽd

μν(z,k⊥) = ˜̄E
d

μν(z,k⊥) +
|km|4
(2π)2

∫
dα⊥S<

μ S<∗
ν

Φm

{
k⊥ − α⊥;−1

2
[qμ(k⊥) + q∗ν(k⊥)] − 1

2
a [qμ′(α⊥) + q∗ν′(α⊥)]

}
(μ·μ′)(ν·ν ′)Ẽa

μ′ν′(z, α⊥),

(39b)

where ˜̄E
a

μν represents scattering due to the coherent part of E , whereas the integral

term in (39) represents scattering due to the diffuse part of E . We may also regard

˜̄E
a

μν as the source to our transport equations; it is given as

˜̄E
a

μν = |km|4 Φm

{
k⊥ − k⊥i;

1

2
a [qμ(k⊥) + q∗ν(k⊥)] − 1

2
b [qμ(k⊥i) + q∗ν(k⊥i)]

}
(
Sa

μSa∗
μ

)
(μ · μi)(ν · νi)

(
〈Sb

m0〉μiEμi

)(
〈Sb

m0〉νiEνi

)∗
. (40)

where summation over b is implied. Note that Ẽa in (39) includes both Ẽu and Ẽd

(corresponding to up- and down-going waves). When the superscripts {a, b} corre-

spond to u, the value of {a, b} in the argument of Φm takes the value +1; on the other

hand, when the superscripts {a, b} correspond to d the value of a in the argument of

Φm takes the value −1. Since all quantities in (39) and (40) correspond to the same

layer m we have dropped the subscript m to avoid cumbersome notations. Summa-

tion over μ′ and ν ′ is implicit in (39). Similarly, summation over μi and νi is implicit

in (40). Sb
m0 is the scattering amplitude of waves with direction b in m-th layer due

to wave incident in Region 0. To obtain appropriate boundary conditions we have

to go back to the integral equation representations for Ẽu
μν and Ẽd

μν and observe their

behaviour at the interfaces and try to find a relation between them.

After some manipulations we arrived at the following boundary conditions. At the

(m − 1)-th interface we have

Ẽd
m(zm−1,k⊥) =

∫
dk′

⊥
〈 ...

Rm−1,m (k⊥,k′
⊥)

〉
Ẽu

m(zm−1,k
′
⊥), (41a)

with
...

R=
...

R̄ ⊗
...

R̄
∗

where
...

R̄m−1,m is the stack reflection matrix (not the local reflection

matrix) for a wave incident from below on the (m − 1)-th interface. Similarly

Ẽu
m(zm−1,k⊥) =

∫
dk′

⊥
〈 ...

Rm+1,m (k⊥,k′
⊥)

〉
Ẽd

m(zm−1,k
′
⊥), (41b)
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where
...

Rm+1,m is the tensor product of stack reflection matrix for a wave incident

from above on the m-th interface.

We were able to obtain the boundary conditions only after imposing certain ap-

proximations as given below. Consider the following identity:

S̄du
mm = F̄m

...

R̄m−1,m

{
S̄>

m + S̄uu
mm

}
F̄m (42)

where F̄m = diag
{
eiqhdm , eiqvdm

}
. Notice that this is an operator relation where all

elements are operators. Taking the tensor product of (42) with its complex conjugate

we have

S̄du
mm⊗S̄du∗

mm =
(
F̄m ⊗ F̄∗

m

) ( ...

R̄m−1,m ⊗
...

R̄
∗
m−1,m

) ({
S̄>

m + S̄uu
mm

}
⊗

{
S̄>

m + S̄uu
mm

}∗) (
F̄m ⊗ F̄∗

m

)
.

(43)

Next we average (43) w.r.t. surface fluctuations and get

〈
S̄du

mm⊗S̄du∗
mm

〉
�

(
F̄m ⊗ F̄∗

m

) 〈 ...

R̄m−1,m ⊗
...

R̄
∗
m−1,m

〉〈 {
S̄>

m + S̄uu
mm

}
⊗

{
S̄>

m + S̄uu
mm

}∗ 〉 (
F̄m ⊗ F̄∗

m

)
(44a)

where we the two tensor products in the middle are assumed to be weakly correlated.

A further approximation that we impose is given as follows

〈 {
S̄>

m + S̄uu
mm

}
⊗

{
S̄>

m + S̄uu
mm

}∗ 〉
� S̄>

m ⊗ S̄>∗
m +

〈
S̄uu

mm ⊗ S̄uu∗
mm

〉
. (44b)

This is similar to the approximation we used while computing the Wigner transforms

of the Green’s functions. These are the kinds of approximations required to arrive at

our boundary conditions.

5. Transition to Radiative Transfer

Now we have to transition from this transport equation (44) to the phenomeno-

logical radiative transfer equation discussed earlier. To accomplish this we have to

link the key quantities of waves and radiative transfer, viz., coherence function and

specific intensity. The relation between them is obtained by computing the energy
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density using the two concepts. Thus we have

1

2
ε
{
〈|Ev(r)|2〉 + 〈|Eh(r)|2〉

}
=

1

c

∫
dΩsI(r, ŝ). (45)

The Wigner transform provides us following relation:

〈Eμ(r)E∗
ν(r)〉 =

1

(2π)2

∫
dk⊥Eμν(z,k⊥). (46)

Defining Iμν as

Iμν(z, ŝ) =
1

2η

k′2

(2π)2
cos θEμν(z,k⊥), (47)

where η is the intrinsic impedance of the medium, we have from (45) and (46) I =

Ivv + Ihh. To facilitate comparison with the results of Ulaby et al.[31], and Lam and

Ishimaru [14] we will use a modified version of the Stokes vector [12]. Instead of the

standard form {I, Q, U, V } we use {(I +Q)/2, (I−Q)/2, U, V }. Thus, in terms of Iμν

defined in (47) our modified Stokes vector is
{
Ivv, Ihh,

1
2
(Ivh + Ihv) ,− i

2
(Ivh − Ihv)

}
.

There is still one difference that needs to be ironed out before we transition to the

RT equations. Notice that in our wave approach we obtained transport equations

for Ẽ , which is the fluctuating part of the coherence function. On the other hand

the phenomenological RT equations are traditionally written for total intensities.

Therefore we have to express our transport equations in terms of E . Notice that

E = Ē + Ẽ , where Ē , the average part of E satisfies:{
d

dz
− ia(qμ − q∗ν)

}
Ēa

m(z,k⊥) = 0, (48)

Using (48) in (39) we obtain{
d

dz
− i [qμ(k⊥) − q∗ν(k⊥)]

}
Eu

μν(z,k⊥) =
|km|4
(2π)2

∫
dα⊥S>

μ S>∗
ν (μ · μ′)(ν · ν ′)×

×Φm

{
k⊥ − α⊥;

1

2
[qμ(k⊥) − q∗ν(k⊥)] − 1

2
a [qμ′(α⊥) − q∗ν′(α⊥)]

}
Ea

μ′ν′(z, α⊥),

(49a){
− d

dz
− i [qμ(k⊥) − q∗ν(k⊥)]

}
Ed

μν(z,k⊥) =
|km|4
(2π)2

∫
dα⊥S<

μ S<∗
ν (μ · μ′)(ν · ν ′)×
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×Φm

{
k⊥ − α⊥;−1

2
[qμ(k⊥) − q∗ν(k⊥)] − 1

2
a [qμ′(α⊥) − q∗ν′(α⊥)]

}
Ea

μ′ν′(z, α⊥),

(49b)

Notice that this equation is expressed entirely in total intensity. Now we can transition

to the phenomenological RT equations. Using the relation between E and I, we change

the integration variable to solid angle and arrive at the following equation,

{
cos θ

d

dz
+ γij

}
Iu
j (z, ŝ) =

∫
dΩ′P ua

ij (Ω, Ω′)Ia
j (z, ŝ′), (50a){

− cos θ
d

dz
+ γij

}
Id
j (z, ŝ) =

∫
dΩ′P da

ij (Ω, Ω′)Ia
j (z, ŝ′), (50b)

where
=
γ is the extinction matrix and

=

P is the phase matrix. Implicit summation

over superscripts a and subscript ν is assumed in (50). Although the structure of this

equation is identical to that of the RT (equation (2)), the elements of the phase matrix

and the extinction matrices are not the same primarily because of coherence induced

by boundaries. As mentioned earlier, we assume that the layer thickness is greater

than the mean free path of the corresponding medium. If, in addition, we assume the

quasi-homogeneous field approximation we obtain the following expressions for the

extinction and phase matrices:

=
γ= cos θ diag {2q′′v , 2q′′h, q′′v + q′′h, q

′′
v + q′′h} (51a)

P ab
μν =

1

(2π)2

1

4
|km|4Φm {k⊥ − k′

⊥; k′
m[a cos θ − b cos θ′]}Pab

μν . (51b)

The double primes are used in (51a) to denote imaginary parts. For μ = v, h,

Pab
μv =

(
μa · v′b)2 Pab

μh =
(
μa · h′b)2

Pab
μU =

(
μa · v′b) (

μa · h′b) Pab
μV = 0 (52)

Similarly,

Pab
Uv = 2

(
va · v′b) (

ha · v′b) Pab
Uh = 2

(
va · h′b) (

ha · h′b)
Pab

UU =
(
va · v′b) (

ha · h′b) +
(
va · h′b) (

ha · v′b) Pab
UV = 0 (53)
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Pab
V v = Pab

V h = Pab
V U = 0

Pab
V V =

(
va · v′b) (

ha · h′b) − (
va · h′b) (

ha · v′b) (54)

Noting the implied summation over a in (50) we see that they are identical to the

RT equations given in Section 2. Now we have explicit expressions for the extinction

matrix and phase matrix in terms of the statistical parameters of the problem thanks

to our wave approach.

We next turn our attention to the boundary conditions (BC). In our wave approach

we obtained BCs in terms of ‘stack’ reflection matrix
...

R̄, whereas in the RT approach

the BCs are given in terms of the local interface reflection matrices. We can readily

reconcile this apparent difference. Note that the BC in the wave approach forms

a closed system whereas in the RT approach it is ‘open’ (linked to adjacent layer

intensities). Let us take a look at the BC at the (m− 1)-th interface.
...

R̄m−2,m can be

expressed in terms of R̄m−2,m−1 as follows,

...

R̄m−1,m= R̄m−1,m + T̄m,m−1

{
I−

...

R̄m−2,m−1 F̄m−1R̄m,m−1

}−1 ...

R̄m−2,m−1 F̄m−1T̄m−1,m.

(55)

This is the relation between the stack reflection coefficients of adjacent interfaces.

The R̄ and T̄ are local (single interface) reflection and transmission matrices at the

(m − 1)-th interface. On operating Eu
m with (55) we get

Ed
m = R̄m−1,mEu

m + T̄m,m−1E
d
m−1. (56)

Notice that this boundary condition now involves only local interface Fresnel coeffi-

cients.

Similarly we write
...

R̄m+1,m in terms of
...

R̄m+2,m+1 and hence obtain the BC at the

m-th interface

Eu
m = R̄m+1,mEd

m + T̄m,m+1E
u
m+1. (57)

Next we take the tensor product of (56) with its complex conjugate and average

w.r.t. surface fluctuations. Employing the Wigner transform operator, we obtain the
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boundary condition at the (m − 1)-th interface, which is similar to that of the RT

system. However, the reflection and transmission matrices used in the RT system

correspond to the unperturbed medium as opposed to the average medium as in the

case of the statistical wave approach. Similarly we can obtain the transport-theoretic

boundary conditions at the m-th interface using (57).

6. Discussion

Now that we have made the transition from statistical wave theory to radiative

transfer theory it is instructive to itemize the assumptions implicitly involved in the

RT approach.

1. Quasi-stationary field approximation.

2. Weak fluctuations.

3. Statistical homogeneity of fluctuations.

These are the three well-known conditions necessary for the unbounded random

medium problem.

However, if the medium is bounded we need to impose additional conditions. We

found that the extinction coefficients calculated in the wave approach and the RT

approach are different and only after applying further approximations can they be

made to agree with each other. The following two additional conditions are required

for our bounded random medium problem:

4. Layer thickness must be of the same order or greater than the corresponding mean

free path.

5. Weak surface correlation approximation.

6. All fluctuations of the problem are statistically independent.

In this report we have modelled the random media as random continua. Another

approach to this problem is the discrete random medium model [8, 15, 30, 12, 29, 19].
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Recently Mishchenko et al. [19] (hereafter referred to as MTL for brevity) derived the

vector radiative transfer equation (VRTE) for a bounded discrete random medium

using a rigorous microphysical approach. This enabled them to identify the following

assumptions embedded in the VRTE.

1. Scattering medium is illuminated by a plane wave.

2. Each particle is located in the far field zone of all other particles and the

observation point is also located in the far field zones of all the particles forming

the scattering medium.

3. Neglect all scattering paths going through a particle two or more times

(Twersky approximation).

4. Assume that the scattering system is ergodic and averaging over time can be

replaced by averaging over particle positions and states.

5. Assume that (i) the position and state of each particle are statistically independent

of each other and those of all other particles and (ii) spatial distribution of the

particles throughout the medium is random and statistically uniform.

6. Assume that the scattering medium is convex.

7. Assume that the number of particles N forming the scattering medium is

very large.

8. Ignore all the diagrams with crossing connections in the diagrammatic expansion

of the coherency dyadic.

It is apparent that there are distinct differences in the analyses for scattering from

discrete and continuous random media. Hence it is not possible to make a one-to-one

correspondence between the conditions of MTL and those in this report. Below is an

attempt to make a connection between the two by considering each condition derived

by MTL and relating it to ours. We will denote the condition numbers derived by

MTL as MTL # and those obtained in this report as SM #.
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MTL 1:- We also have a plane electromagnetic wave illuminating our system,

although as pointed out by MTL it can be a quasi-plane wave.

MTL 2:- We also have implicitly employed the far field approximation. It is

embedded in SM 1.

MTL 3:- This is embedded in SM 2. Although not explicitly stated, the scattering

processes as mentioned in MTL 3 are avoided.

MTL 4:- In this report we have restricted our attention to the time-independent

problem and hence did not encounter the issue of ergodicity.

MTL 5:- This condition is embedded in SM 3.

MTL 6:- In our problem we have distinct scattering boundaries and the character of

the waves exiting or entering them are explicitly contained in the boundary

conditions. Hence convexity of the scattering medium is not a necessary

condition for us.

MTL 7:- This condition is embedded in SM 4.

MTL 8:- This condition is embedded in SM 2. Under weak fluctuation

approximation we only take into consideration the leading term of the

intensity operator.

Since the problem that we considered in this report involve scattering boundaries we

have some additional conditions beyond those of MTL.

There are a few more remarks that we would like to make before closing. (a) In

RT theory the medium is assumed to be sparse and hence the “refraction effects”

of the fluctuations are ignored. Thus in the boundary conditions we should use

the background medium parameters rather than the effective medium parameters

as derived in our statistical wave theory. (b) To arrive at (50) from (49) we have

ignored the contribution of evanescent modes. (c) The condition about statistical

homogeneity of fluctuations may be relaxed by assuming it to be statistically quasi-

homogeneous and we still can arrive at our results without much difficulty. (d) The
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assumption regarding underlying statistics to be Gaussian is not only a convenience

but also a reasonably good approximation in many applications. However, there are

indeed certain situations where the statistics are not Gaussian. Similar analysis for

such more general statistics are more complex and involved.

To summarize, we have enquired into the assumptions involved in adopting the

radiative transfer approach to scattering from layered random media with rough in-

terfaces. To facilitate this enquiry we adopted a wave approach to this problem and

derived the governing equations for the first and second moments of the wave fields.

We employed Wigner transforms and transitioned to the system corresponding to

that of radiative transfer approach. In this process we found that there are more

conditions implicitly involved in the RT approach to this problem than it is widely

believed to be sufficient. With the recent development of fast and efficient algorithms

for scattering computations and the enormous increase in computer resources it is

now feasible to take an entirely numerical approach to this problem without impos-

ing any approximations. In spite of such developments, to keep the size of the problem

manageable only special cases have been studied thus far [11, 25, 22, 26]. Hence it is

very much of relevance, interest and convenience to apply the RT approach to these

problems. However, one should keep in mind the assumptions involved in such an

approach. Otherwise interpretations of results based on RT theory can be misleading.

22
Approved for public release; distribution unlimited.



References

[1] F. G. Bass and I. M. Fuks. Wave Scattering from Statistically Rough Surfaces.

Pergamon, Oxford, 1979.

[2] P. Beckmann and A. Spizzichino. The Scattering of Electromagnetic Waves from

Rough Surfaces. Artech House, Norwood, Massachusetts, 1987.

[3] G. S. Brown. A theoretical study of the effects of vegetation on terrain scattering.

Technical report, Rome, NY, 1988. RADC-TR-89-64.

[4] J. Caron, C. Andraud, and J. Lafait. Radiative transfer calculations in multilayer

system with smooth or rough interfaces. J. Mod. Opt., 51:575–595, 2004.

[5] S. Chandrasekar. Radiative Transfer. Dover, New York, 1960.

[6] N. S. Chauhan, R. H. Lang, and K. J. Ranson. Radar modelling of boreal forest.

IEEE Trans. Geosci. Rem. Sens., 29:627–638, 1991.

[7] J. M. Elson. Characteristics of far field scattering by means of surface roughness

and variations in subsurface permittivity. Waves Random Media, 7:303–317,

1997.

[8] L. L. Foldy. The multiple scattering of waves. Phys. Rev., 67:107–117, 1945.

[9] A. T. Friberg. Energy transport in optical systems with partially coherent light.

Applied Optics, 25:4547–4556, 1986.

[10] A. K. Fung and M.F. Chen. Scattering from a rayleigh layer with an irregular

interface. Radio Sci., 16:1337–1347, 1981.

[11] H. Giovannini, M. Saillard, and A. Sentenac. Numerical study of scattering from

rough inhomogeneous films. J. Opt. Soc. Am. A, 15:1182–1191, 1998.

[12] A. Ishimaru. Wave Propagation and Scattering in Random Media. IEEE Press,

New York, 1997.

23
Approved for public release; distribution unlimited.



[13] M. A. Karam and A. K. Fung. Propagation and scattering in multi-layer random

media with rough interfaces. Electromagnetics, 2:239–256, 1982.

[14] C. M. Lam and A. Ishimaru. Muller matrix representation for a slab of random

medium with discrete particles and random rough surfaces. Waves Random

Media, 3:111–125, 1993.

[15] M. Lax. Multiple scattering of waves. Rev. Mod. Phys., 23:287–310, 1951.

[16] J. K. Lee and J. A. Kong. Active microwave remote sensing of an anisotropic

layered random medium. IEEE Trans. Geosci. Rem. Sens., 23:910–923, 1985.

[17] P. Liang, M. Moghaddam, L. E. Pierce, and R. M. Lucas. Radar backscattering

model for multilayer mixed species. IEEE Trans. Geosci. Rem. Sens., 43:2612–

2626, 2005.

[18] E. W. Marchand and E. Wolf. Radiometry with sources in any state of coherence.

J. Opt. Soc. Am., 64:1219–1226, 1974.

[19] M. I. Mishchenko, L. D. Travis, and A. A. Lacis. Multiple Scattering of Light by

Particles. Cambridge University Press, New York, 2006.

[20] S. Mudaliar. Electromagnetic wave scattering from a random medium layer with

a rough interface. Waves Random Media, 4:167–176, 1994.

[21] S. Mudaliar. Statistical wave theory for a random medium layer over a two-

scale rough surface. Proc. IASTED Intl. Conf. Antennas, Radars and Wave

Propagation, pages 246–253, 2005.

[22] K. Pak, L. Tsang, L. Li, and C. H. Chan. Combined random rough surface and

volume scattering based on monte-carlo simulation of maxwell equations. Radio

Sci., 23:331–338, 1993.

24
Approved for public release; distribution unlimited.



[23] R. J. Papa and D. Tamasanis. A model for scattering of electromagnetic waves

from foliage-covered terrain. volume 46 of AGARD Conf. Proc., pages 4.1–4.12,

1991.

[24] H. M. Pederson and J. J. Stamnes. Radiometric theory of spatial coherence in

free space propagation. J. Opt. Soc. Am. A, 17:1413–1420, 2000.

[25] G. Peloci and K. Coccioli. A finite element approach for scattering from in-

homogeneous media with a rough interface. Waves Random Media, 7:119–127,

1997.

[26] K. Sarabandi, O. Yisok, and F.T. Ulaby. A numerical simulation of scattering

from one-dimensional inhomogeneous dielectric rough surfaces. IEEE Trans.

Geosci. Remote Sens., 34:425–432, 1996.

[27] R. T. Shin and J. A. Kong. Radiative transfer theory for active remote sensing

of two layer random medium. PIER, 3:359–419, 1989.

[28] V. V. Sobolev. A Treatise on Radiative Transfer. Van Nostrand, Princeton, New

Jersey, 1963.

[29] L. Tsang, J. A. Kong, and R. T. Shin. Theory of Microwave Remote Sensing.

John Wiley, New York, 1985.

[30] V. Twersky. On propagation in random media of discrete scatterers. volume 16

of Proc. of the Symposium of Applied Mathematics, pages 84–116, 1964.

[31] F. T. Ulaby, R. K. Moore, and A. K. Fung. Microwave Remote Sensing: Active

and Passive. Artech House, Norwood, 1986.

[32] F. T. Ulaby, K. Sarabandi, K. McDonald, K. M. Whitt, and M. C. Dobson.

Michigan microwave canopy model. Int. J. Rem. Sens., 11:1223–1253, 1990.

[33] A. G. Voronovich. Wave Scattering from Rough Surfaces. Springer-Verlag, Berlin,

1999.

25
Approved for public release; distribution unlimited.



[34] K. Yoshimori. Radiometry and coherence in a nonstationary optical field. J.

Opt. Soc. Am. A, 15:2730–2734, 1998.

[35] Yu. A. Kravtsov Yu. N. Barabanenkov, A. G. Vinogradov and V. I. Tatarskii.

Application of the theory of multiple scattering of waves to the derivation of the

radiation transfer equation for a statistically inhomogeneous medium. Izv. VUZ

Radiofiz.., 15:1852–1860, 1972.

[36] M. A. Zuniga, T. M. Habashy, and J. A. Kong. Active remote sensing of layered

random media. IEEE Trans. Geosci. Rem. Sens., 17:296–302, 1979.

26
Approved for public release; distribution unlimited.


	StmtACover
	NoticePgwoSigs
	SF298
	final



